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% Motivation %HR

« Algorithms motivated by similar processing in
animals and humans:
— Hearing and sound classification
— Vision and identification of objects

o Text-independent robust speaker identification
— Identifying the speaker from the “music” of his voice

o Speaker-independent speech recognition
— ldentifying phonemes, vowels, words from their inherent sounds

o Identification of musical instruments (“timbre”)

Applications to acoustic signal recognition

— Fault identification in tools and wear prediction
— Ground vehicle identification from array microphones

NEXT CHALLENGE: Biology Inspired
C *~ R Sensor Network processing
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Acoustic Vehicle Classification %
ISR

Obijectives and Challenges

« Develop systematic methodologies and algorithms; not ad hoc
« Robust Target ID (wrt environment, terrain, speed)
o Algorithms for combined DOA (localization) and target ID

— Localization assisted ID
— ID assisted localization

« Multi-target detection, ID and DOA; separation of closely spaced
targets

« Robust feature extraction from auditory models; dynamic DOA
and ID

« Algorithm evaluation in the field and comparison against
conventional algorithms for detection, DOA and ID
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Multiresolution Adaptive Acoustic %
ISR

Classification
« Architecture

Feedback
Data | * | ? " | Class
) Multiresolution I Nonlinear l Learning Clustering I
Preprocessor Features Postprocessor

« Architecture and formulation address two most important issues:
— Progressive classification; Which features to use and when
— Efficient design of databases for reference signals and fast search
. Trade-off between efficiency in features (compression) and
accuracy in classification leads to
« Mathematical formulation of the problem:
— Combined compression and classification for general signals
— Content-based feature extraction and use for classification
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Multiresolution Preprocessor: %
Auditory Filtering ISR

Two auditory filters, motivated and designed according to acoustic
physiology and acoustic cortex models, were used to compute the
timbre spectrogram of one particular subframe in each frame
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« The first filter mimics the action of the inner ear

« Computes the spectrogram of the sound sample, and performs
various nonlinear operations, which models the nonlinear

fluid-cilia couplings and ionic channels of conduction

C *hn A N ( Wavelet Transform )
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Multiresolution Preprocessor: %
Auditory Filtering INR

Multiresolution cortical filter outputs
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« The second filter models the multiscale processing of the
signal that happens in the auditory cortex

« A Ripple Analysis Model, using aripple filter bank, acts
on the output of the inner ear to give multiscale spectra of
the sound timbre (Wavelet Transform)
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) g~ Postprocessor: Multi Resolution (Wavelet) %
e 1ree Structured Vector Quantization (WTSVQ) ISR

Resolution 3

) L

First perform a
multiresolution wavelet
representation of the signals

Consider each signal f at
different resolutions

Sof, Sif, ..., SIf
Proceed by partitioning the
signal space at various

resolutions in progressively
finer cells

Greedy algorithm works by
splitting the cell with
maximum distortion using
finer resolution data

Layer intree | =J*-m, m the scale (top layer O: coarsest)
€ *~ A ~ Celllabels: (layer, index) or (scale, index)
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Approach

. drums
Can we mimic and understand clatinet saxQphone trgribone
the ability of humans to do partial \ _
recognition of musical instruments p1ano

and DOA in a combined and
mutually enhancing fashion?

Human
Listener

« Combine the Stereausis model and its derivatives , with the
Auditory filtering multiscale VQ algorithms

« Using the cochlea, cortical, or combined spectra, perform
DOA on a “per frequency band basis”

« Combine portions of spectra according to DOA

« Use the multiscale classifier to ID portions of spectra
tagged by angle, as compared to stored vehicle spectra

« Repeat the cycle as the scenario evolves
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,& Auditory Processing of %
s Vehicle Acoustic Signals: Cochlea ISR
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Auditory processing for vehicle signals (cochlear filter banks)
Left: vehicle type 1, speed 5km/hr. Right: vehicle type 1, speed 10km/hr
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Auditory Processing of %
Vehicle Acoustic Signals: Cortex ISR
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Auditory frequency

Example of multi-resolution representation from
— cortical module
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y Stereausis Output for Two Vehicles %
@u usis Outpu W | ISR

DOA pattern for 2 vehicles
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Relatively easy case: Large angular separation between two vehicles
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Leaf Node Entropies for

PTSVQ Tree of Vehicle Type 8

cell entropy
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Options N App|y|ng WTSVQ

to Acoustic Vehicle Classification

« GTSVQ: A global tree-structured multi-resolution clustering
mechanism that mimics the aggressive and topological hearing
capabilities of biological systems. Here a global tree is built on
training data from all vehicles. New vehicle insertion problem.

« LVQ: A supervised learning neural network, LVQ achieves optimal
classification in the Bayes sense. It has the disadvantages of a
long search time and sensitivity to initial conditions.

o Parallel TSVQ (PTSVQ): build one (or more) trees for each vehicle.
It achieves a trade-off between GTSVQ and LVQ on classification
performance and search time. Easy new vehicle insertion.

« The following node allocation schemes are examined for PTSVQ:

— PTSVQ(1): Allocation based on sample a priori probability
— PTSVQ(2): Allocation based on equal distortion
— PTSVQ(3): Allocation according to vehicle speed
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Performance Comparisons

among Options

classification rate v.s. tree size
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Classification Performance: 70% samples for
training, 30% for testing (same microphone)
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m Tagging Portions of Spectra %
=are  Based on “per Band” DOA Estimates ISR

® Angular position of ach peak corresponds to DOA estimate
from each cochlea band

® Can use up to 128 bands

® Amplitude indicates signal energy in the band

slice at 60th second in DOA pattern
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® Low pass filtering is performed on groups of band
amplitudes and the resulting peak is used as the DOA
estimate for the vehicle

® Cluster according to angular position of peaks: spectral
portions tagged by angle
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